Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks

Jeffrey O. Zhang

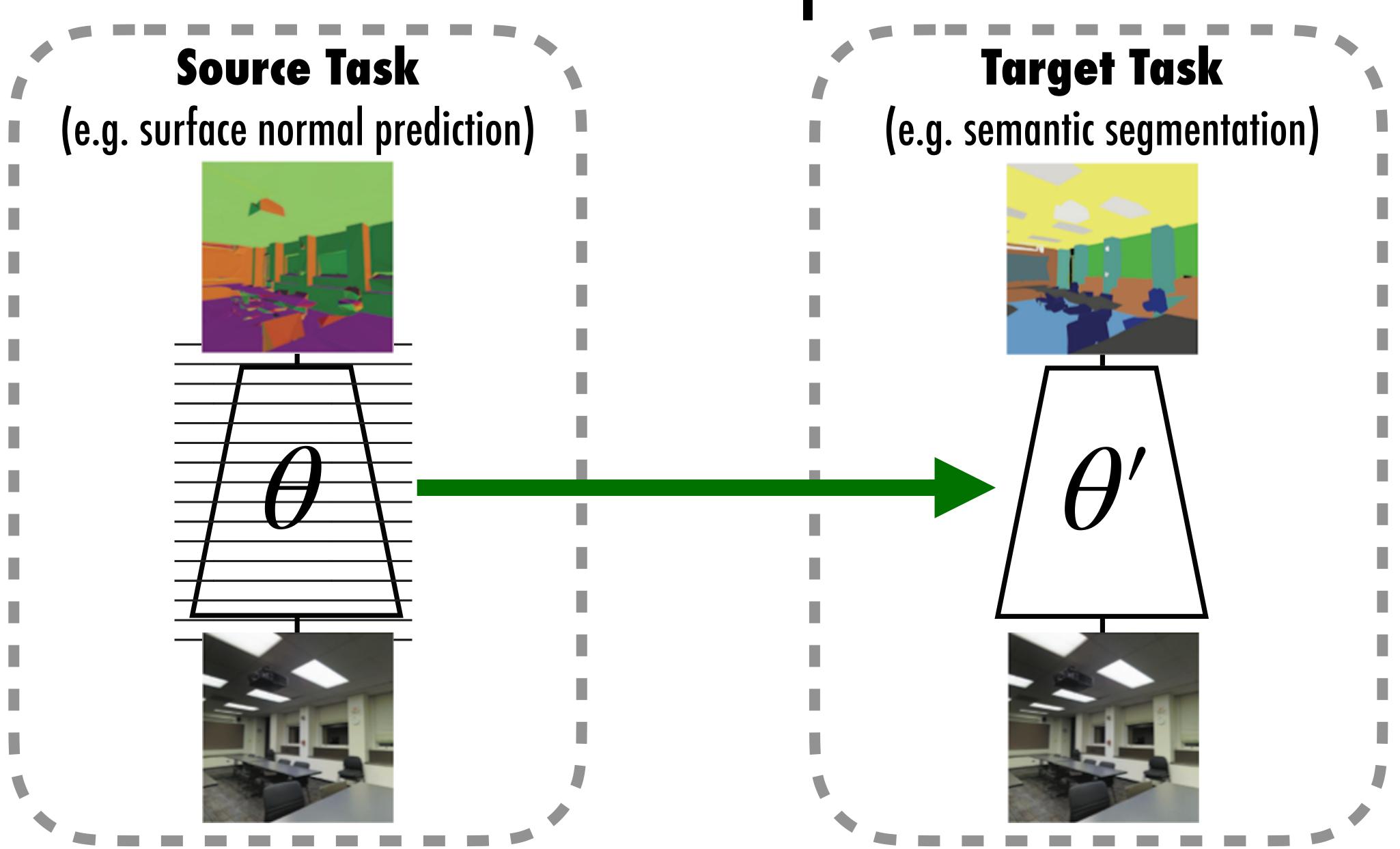
Alexander Sax

Amir Zamir

Leonidas Guibas

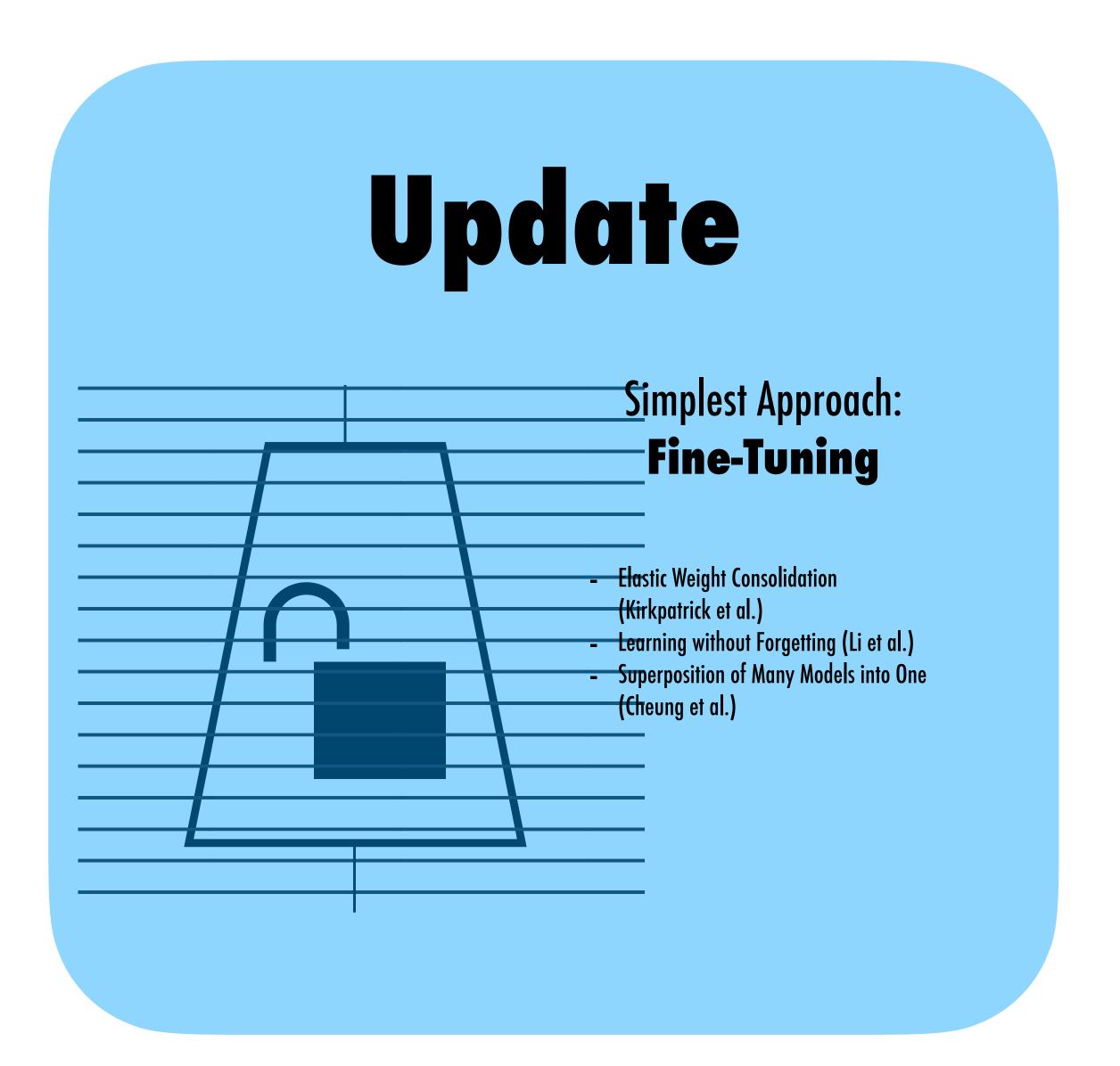
Jitendra Malik

Network Adaptation



Approaches for Network Adaptation

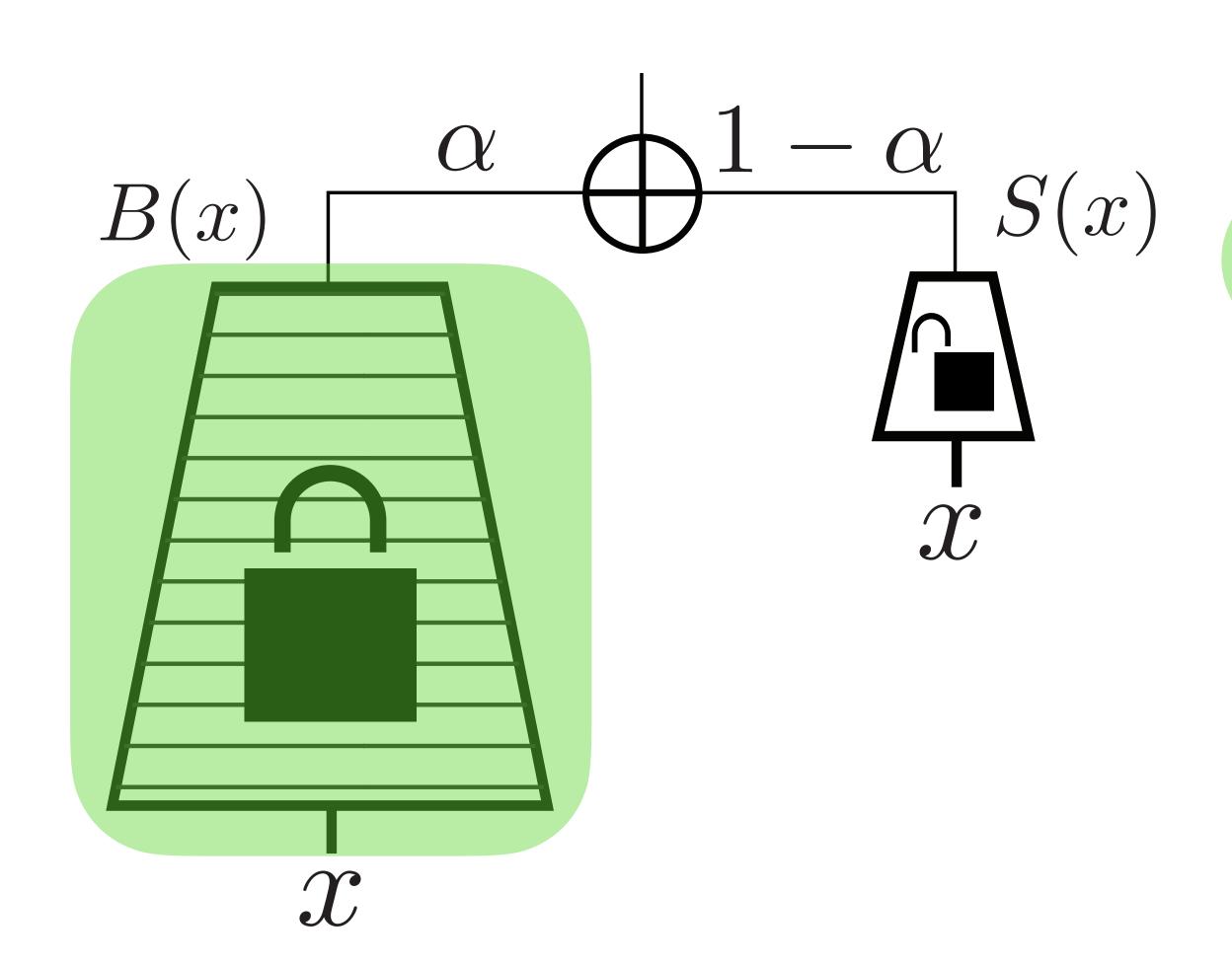




Features vs. Fine-Tuning

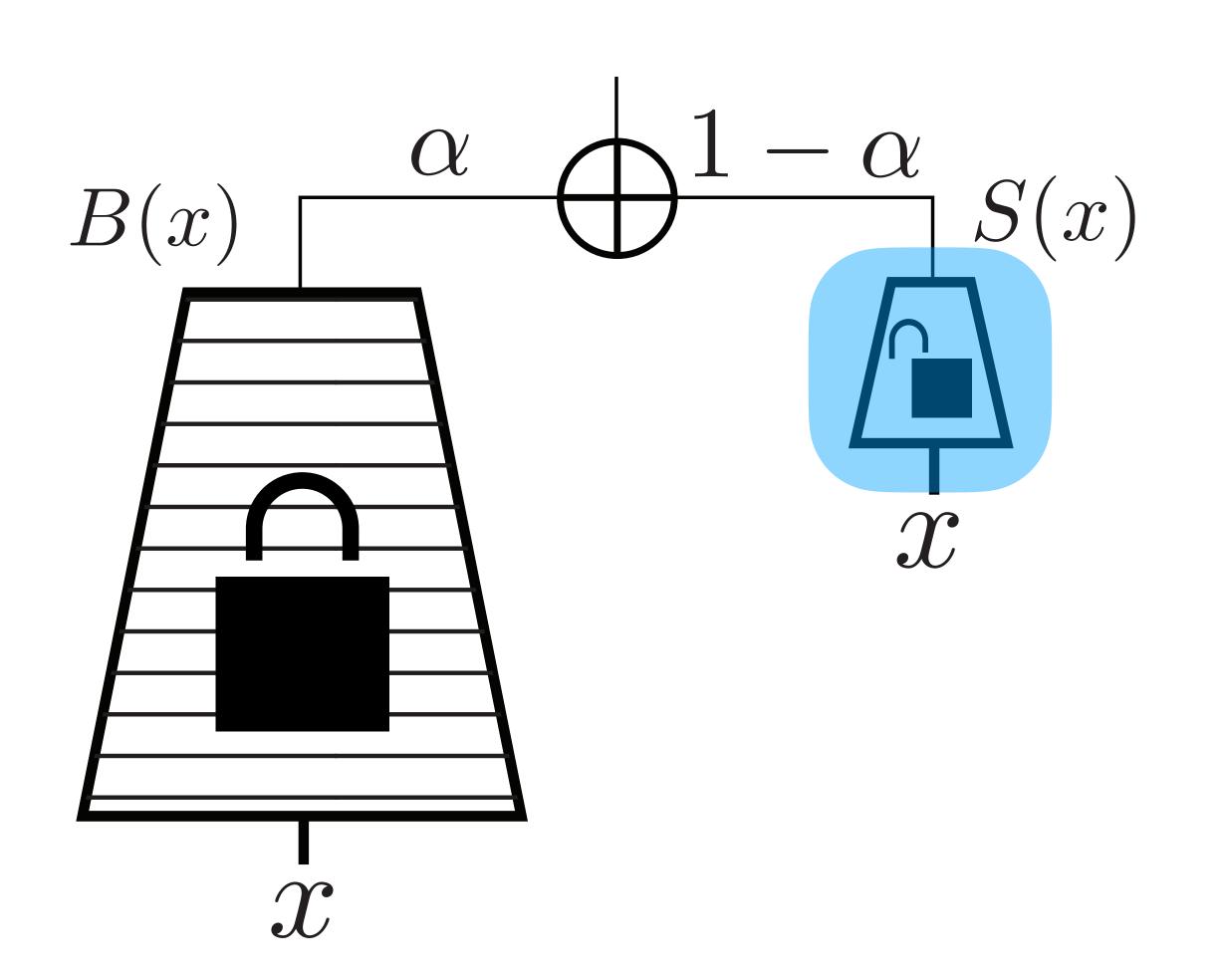
	1 Targ	et Task	> 1 Target Tasks		
Method	Low Data	High Data	(incremental)		
Fixed features	√	(Info Loss)	X (Info Loss)		
Fine-tuning	X (Overfit)	✓	K (Forgetting)		

Side-tuning: a straightforward freeze+add approach



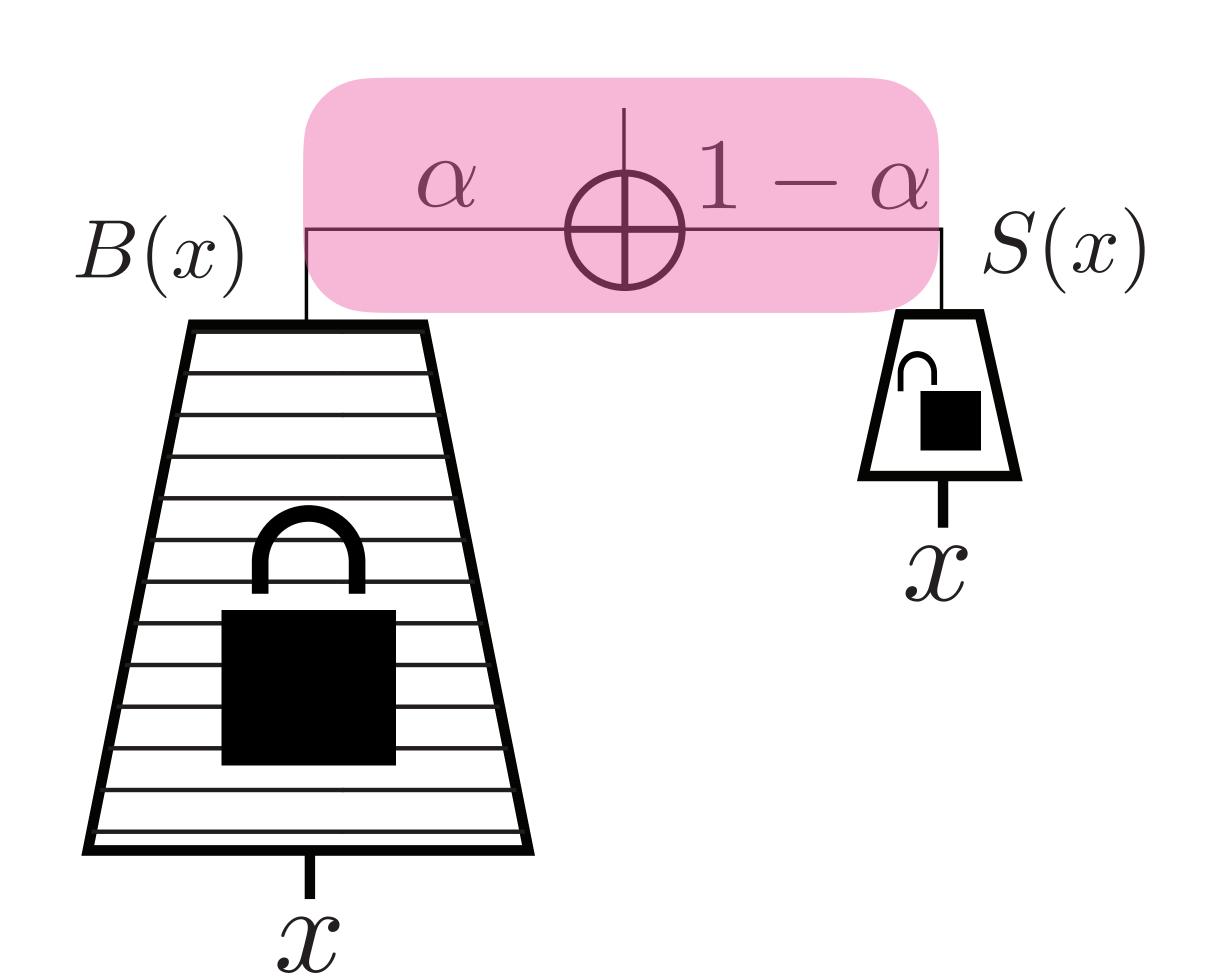
• Base network, $B(x) \rightarrow pre-trained$

Side-tuning: a straightforward freeze+add approach



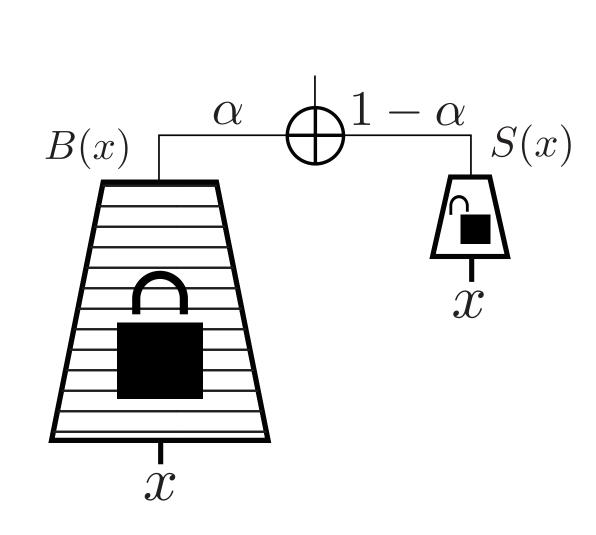
- Base network, $B(x) \rightarrow pre-trained$
- Side network, $S(x) \rightarrow updated$ for target task

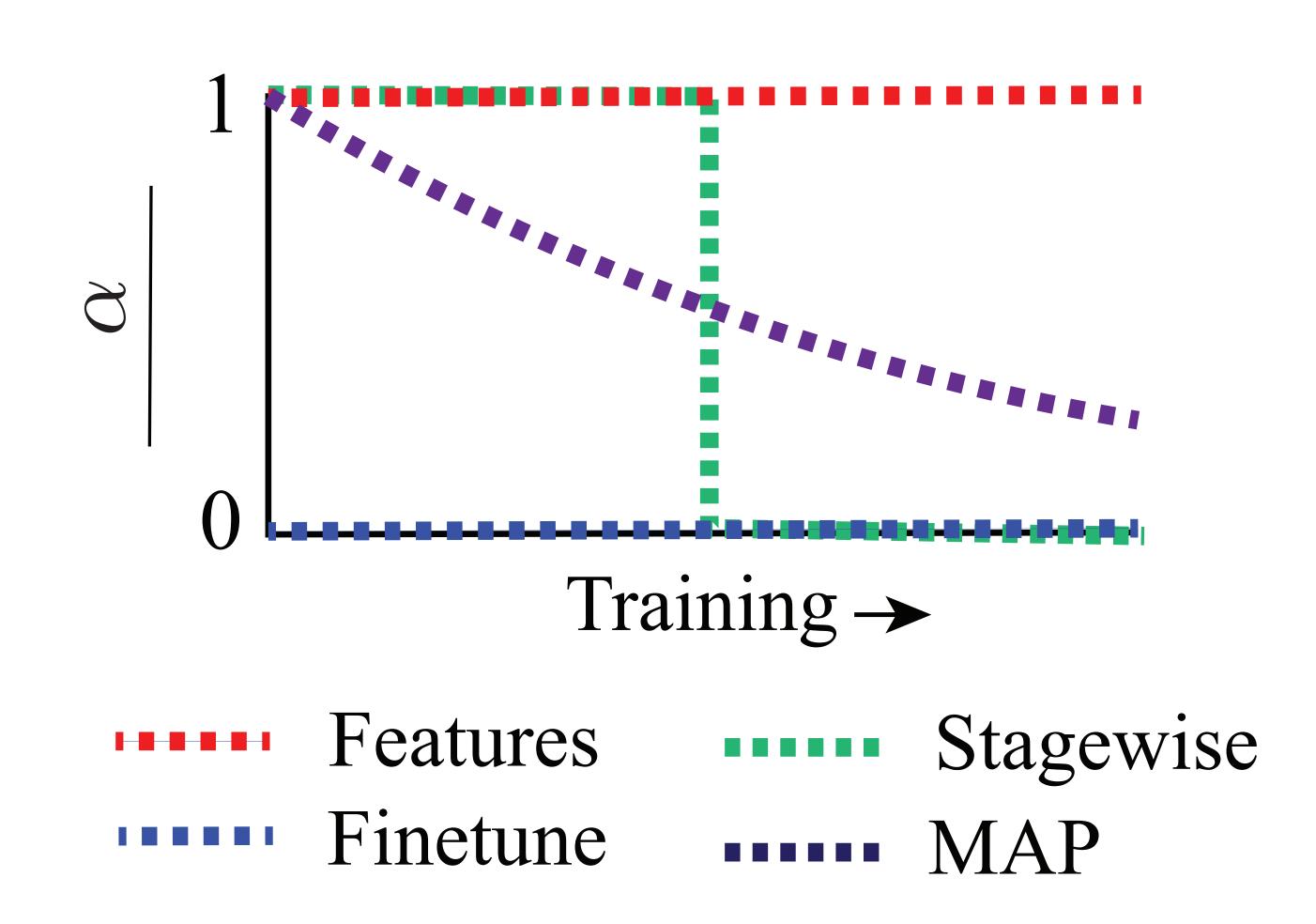
Side-tuning: a straightforward freeze+add approach



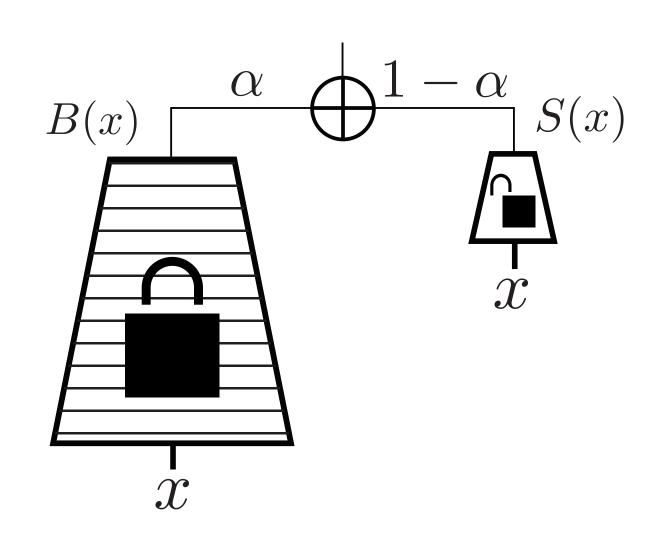
- Base network, $B(x) \rightarrow pre-trained$
- Side network, $S(x) \rightarrow updated$ for target task
- Combined via alpha-blending

Side-Tuning: Learning α



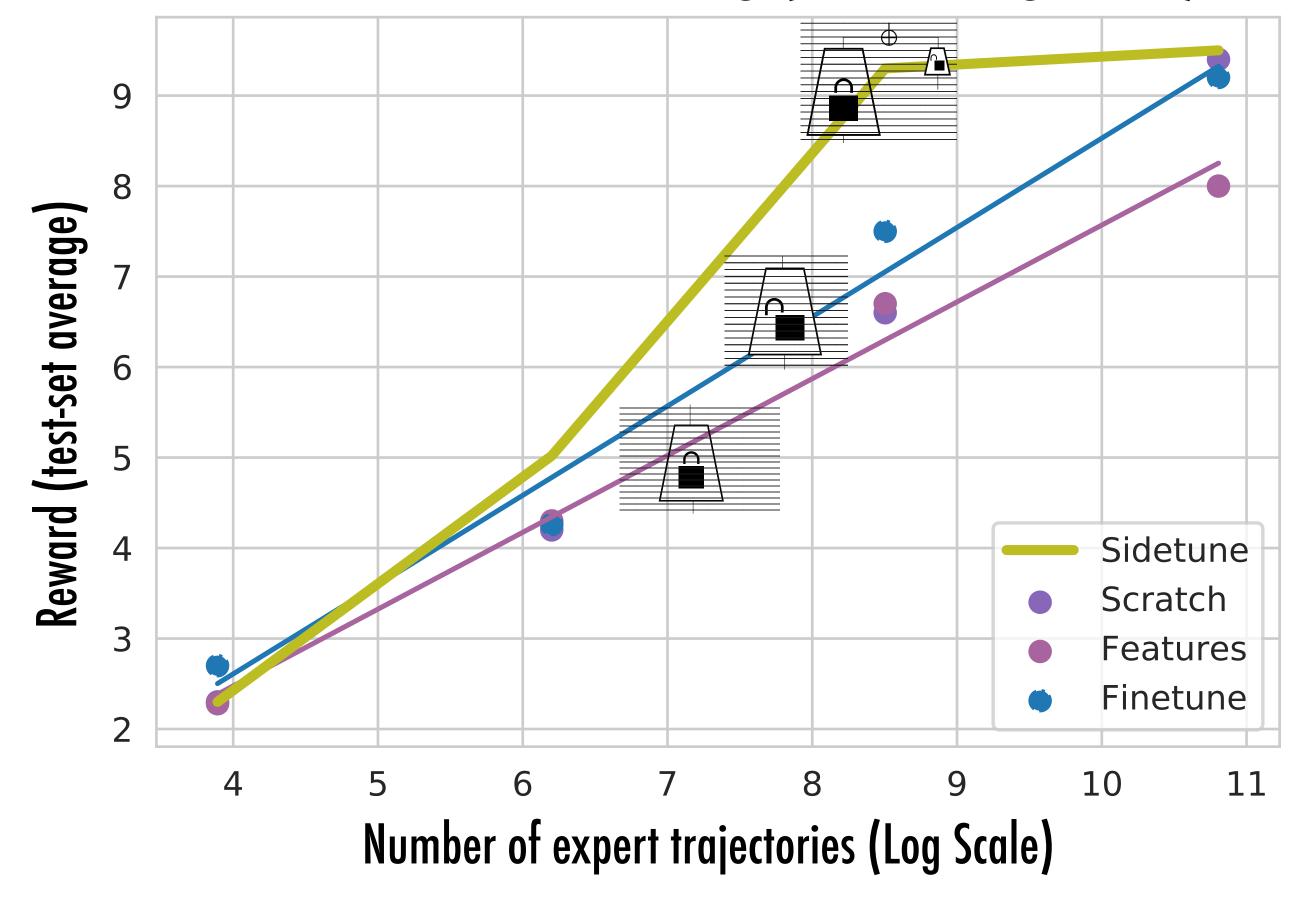


Side-tuning for intermediate amounts of data



- Base network → useful bias
- Side network → consistency

Imitation Learning (Denoising Base)



Features vs. Fine-Tuning

	1 Targ	et Task	> 1 Target Tasks		
Method	Low Data	High Data	(incremental)		
Fixed features	√	(Info Loss)	(Info Loss)		
Fine-tuning	(Overfit)		K (Forgetting)		
Side- $tuning$	√	√			

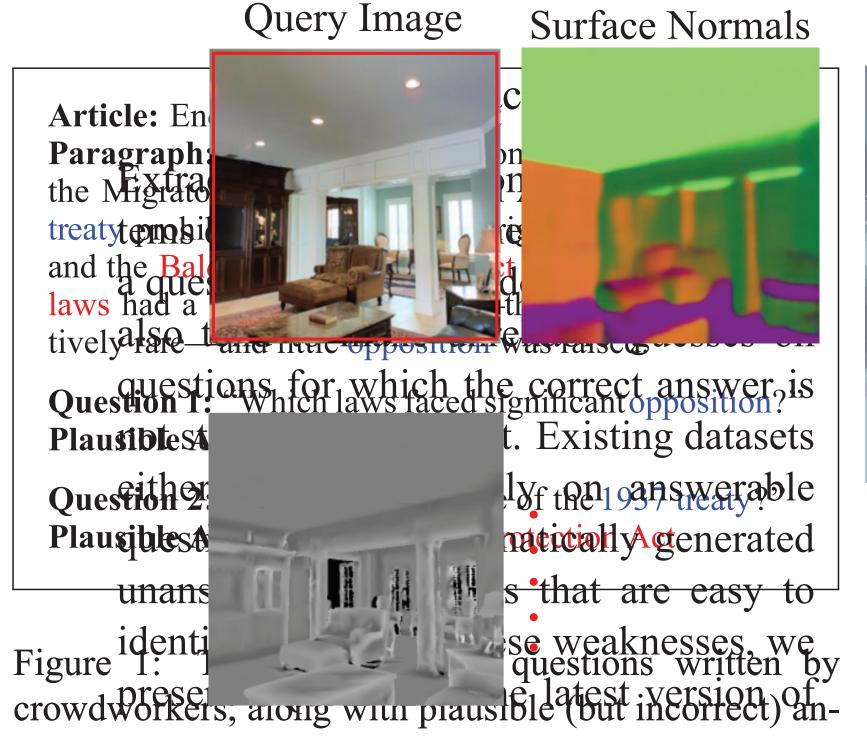
Side-tuning in varied settings

Computer Vision

Query Image Surface Normals xtra ems que uestion Difficultation that the conference answer is Existing datasets ot st on answerable sliding door ither naticallyeageneratedre uesti that are easy to china cabinet, china closet nans denti se weaknesseser we e latest version of rese

Taskonomy (Zamir et al.)

NLP



SQUAD v2 (Rajpurkar et al.)

Robotics (Tested in Gibson)

Visual Observation

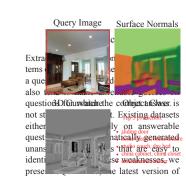
Figure 1: Two unanswerable questions written by crowdworkers, along with plausible (but incorrect) an-

Habitat (Savva et al.) Gibson (Xia et al.)

Transfer Learning in Taskonomy

	From Curvature (100/4M ims.)				
Method	Normals (MSE ↓) Obj. Cls. (Acc. ↑)				
Fine-tune	0.200 / 0.094 24.6 / 62.8				
Features	0.204 / 0.117 24.4 / 45.4				
Scratch	0.323 / 0.095 19.1 / 62.3				
$oxed{Side-tune}$	0.199 / 0.095 24.8 / 63.3				

- Low-dimensional prediction tasks
- High-dimensional pix-to-pix tasks
- Low-data (100 images)
- High-data (4M images)



Transfer Learning in Taskonomy

QA on SQuAD

	From Curvature (100/4M ims.)
Method	Normals (MSE ↓) O	bj. Cls. (Acc. ↑)

Match	(1)	
\mathbf{Exact}	$\mathbf{F1}$	

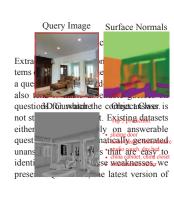
Fine-tune	
Features	
$\mathbf{Scratch}$	
Side- $tune$	

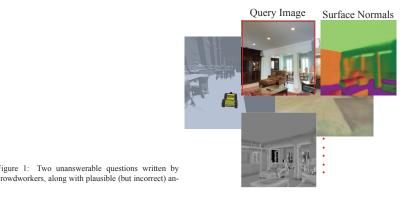
0.200 / 0.094	24.6 / 62.8
0.204 / 0.117	24.4 / 45.4
0.323 / 0.095	19.1 / 62.3
0.199 / 0.095	24.8 / 63.3

79.0	82.2
49.4	49.5
0.98	4.65
79.6	82.7

- Low-dimensional prediction tasks
- High-dimensional pix-to-pix tasks
- Low-data (100 images)
- High-data (4M images)

- NLP domain
- Different architecture (transformer)





Transfer Learning in Taskonomy

From Curvature (100/4M ims.)
Normals (MSE \(\psi \) Obj. Cls. (Acc. \(\ \ \ \ \ \)

 Normals (MSE ↓)
 Obj. Cls. (Acc. ↑)

 0.200 / 0.094
 24.6 / 62.8

 0.204 / 0.117
 24.4 / 45.4

 0.323 / 0.095
 19.1 / 62.3

 0.323 / 0.095
 19.1 / 62.3

 0.199 / 0.095
 24.8 / 63.3

QA on SQuAD

Match	(1)
\mathbf{Exact}	$\mathbf{F1}$

82.2

49.5

4.65

82.7

 Curv.
 Denoise

 10.5
 9.2

 11.2
 8.2

 9.4
 9.4

 11.1
 9.5

Navigation

(IL)

Nav. Rew. (†)

- Low-dimensional prediction tasks
- High-dimensional pix-to-pix tasks
- Low-data (100 images)
- High-data (4M images)

NLP domain

79.0

49.4

0.98

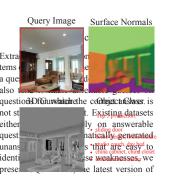
79.6

 Different architecture (transformer)

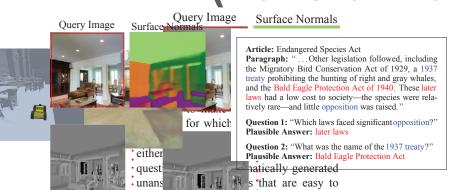
se weaknesses, we

e latest version of

Active POMDP settings



to to to we Figure 1: Two unanswerable questions written b crowdworkers, along with plausible (but incorrect) and



Method

Fine-tune

Features

Scratch

Side-tune

Transfer Learning in Taskonomy

From Curvature (100/4M ims.) Normals (MSE ↓) Obj. Cls. (Acc. ↑)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	• 17
0.200 / 0.094	24.6 / 62.8
0.204 / 0.117	24.4 / 45.4
0.323 / 0.095	19.1 / 62.3
0.199 / 0.095	24.8 / 63.3

QA on SQuAD

Match (†) F1Exact

82.2 79.0 49.549.40.984.6582.7 79.6

Navigation (IL)

Nav. Rew. (†) Nav. Rew. (†) Denoise Curv.

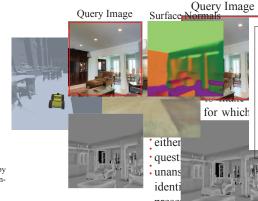
Navigation

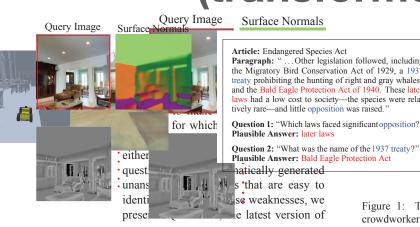
 (\mathbf{RL})

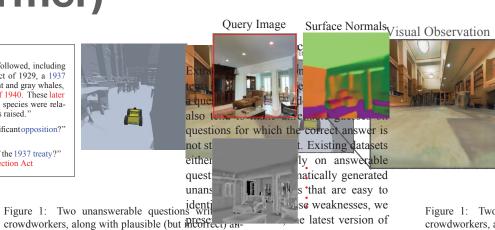
Denoise Curv. 10.510.710.0 9.211.2 8.3 8.211.9 9.49.4 7.57.5**10.4** 11.1 9.5 11.8

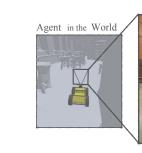
- Low-dimensional prediction tasks
- High-dimensional pix-to-pix tasks
- Low-data (100 images)
- High-data (4M images)

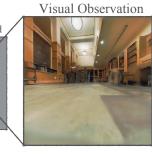
- NLP domain
- Different architecture (transformer)
- Active POMDP settings
- Different learning algorithms (PPO instead of supervised learning)











owdworkers, along with plausible (but incorrect) an

Figure 1: Two unanswerable questions written by crowdworkers, along with plausible (but incorrect) an-

Method

Fine-tune

Features

Scratch

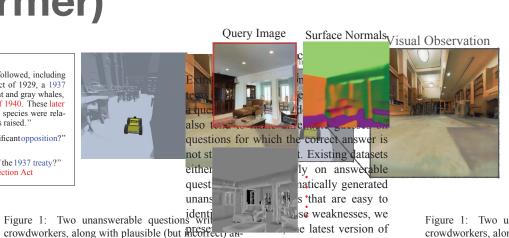
Side-tune

	Transfer Learning in		$\mathbf{Q}\mathbf{A}$ on		Navigation		Navigation	
	Taskonomy		\mathbf{SQuAD}		(IL)		(\mathbf{RL})	
	From Curvature (100/4M ims.)		Match (†)		Nav. Rew. (†)		Nav. Rew. (†)	
Method	Normals (MSE ↓)	Obj. Cls. (Acc. †)	Exact	F1	Curv.	Denoise	Curv.	Denoise
Fine-tune	0.200 / 0.094	24.6 / 62.8	79.0	82.2	10.5	9.2	10.7	10.0
Features	0.204 / 0.117	24.4 / 45.4	49.4	49.5	11.2	8.2	11.9	8.3
Scratch	0.323 / 0.095	19.1 / 62.3	0.98	4.65	9.4	9.4	7.5	7.5
Side- $tune$	0.199 / 0.095	24.8 / 63.3	79.6	82.7	11.1	9.5	11.8	10.4

- Low-dimensional prediction tasks
- High-dimensional pix-to-pix tasks
- Low-data (100 images)
- High-data (4M images)

- NLP domain
- Different architecture (transformer)
- Active POMDP settings
- Different learning algorithms (PPO instead of supervised learning)





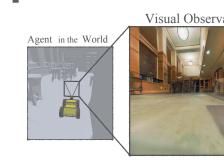
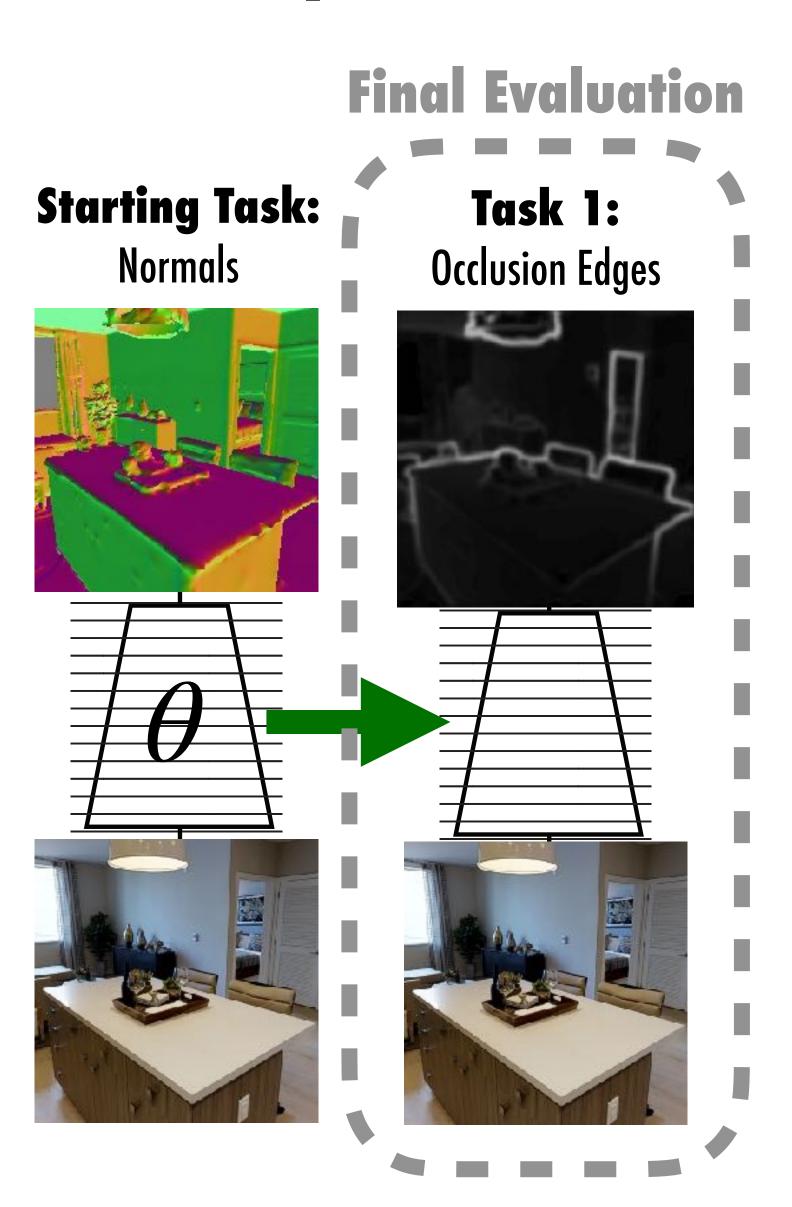


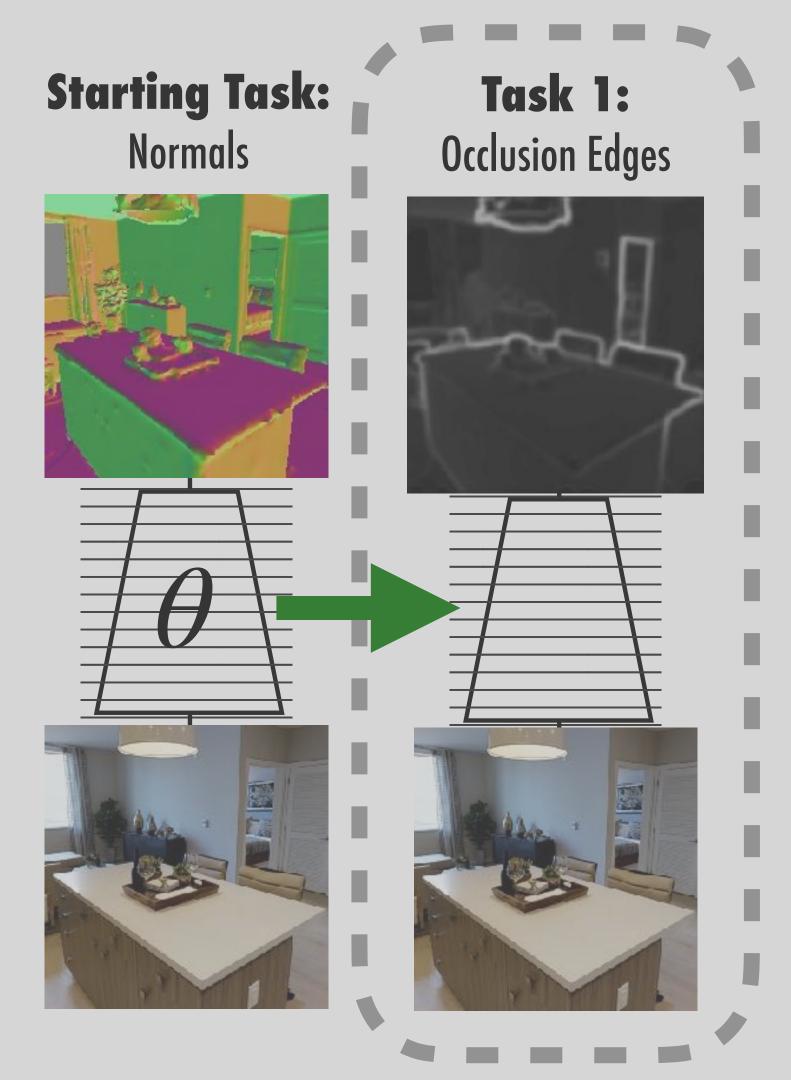
Figure 1: Two unanswerable questions written by crowdworkers, along with plausible (but incorrect) an-

Adaptation



Adaptation

Final Evaluation



Incremental Learning

Final Evaluation



Incremental learning: forgetting and rigidity

Catastrophic Forgetting

Tendency of a network to lose previously learned knowledge upon learning new information.

Catastrophic interference in connectionist networks: the sequential learning problem (McCloskey + Cohen, 1989)

Incremental learning: forgetting and rigidity

Catastrophic Forgetting

Tendency of a network to lose previously learned knowledge upon learning new information.

Catastrophic interference in connectionist networks: the sequential learning problem (McCloskey + Cohen, 1989)

Rigidity (Intransigence)

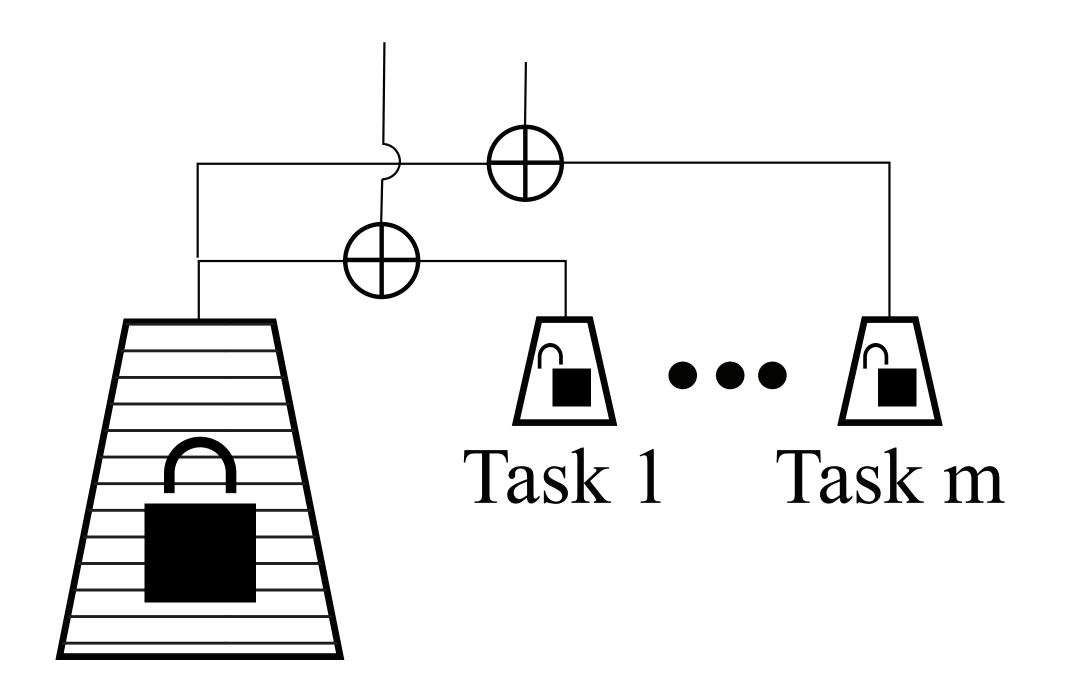
Increasing inability of a network to adapt to new problems as it accrues constraints from previous problems.

The concept of rigidity: an enigma (Len, 1983)

Riemannian walk for incremental learning: understanding forgetting and intransigence (Chaudhry et al 2018)

Side-tuning for incremental learning

Architecture



Incremental learning: forgetting and rigidity

Catastrophic Forgetting

Tendency of a network to lose previously learned knowledge upon learning new information.

Catastrophic interference in connectionist networks: the sequential learning problem (McCloskey + Cohen, 1989)

Rigidity (Intransigence)

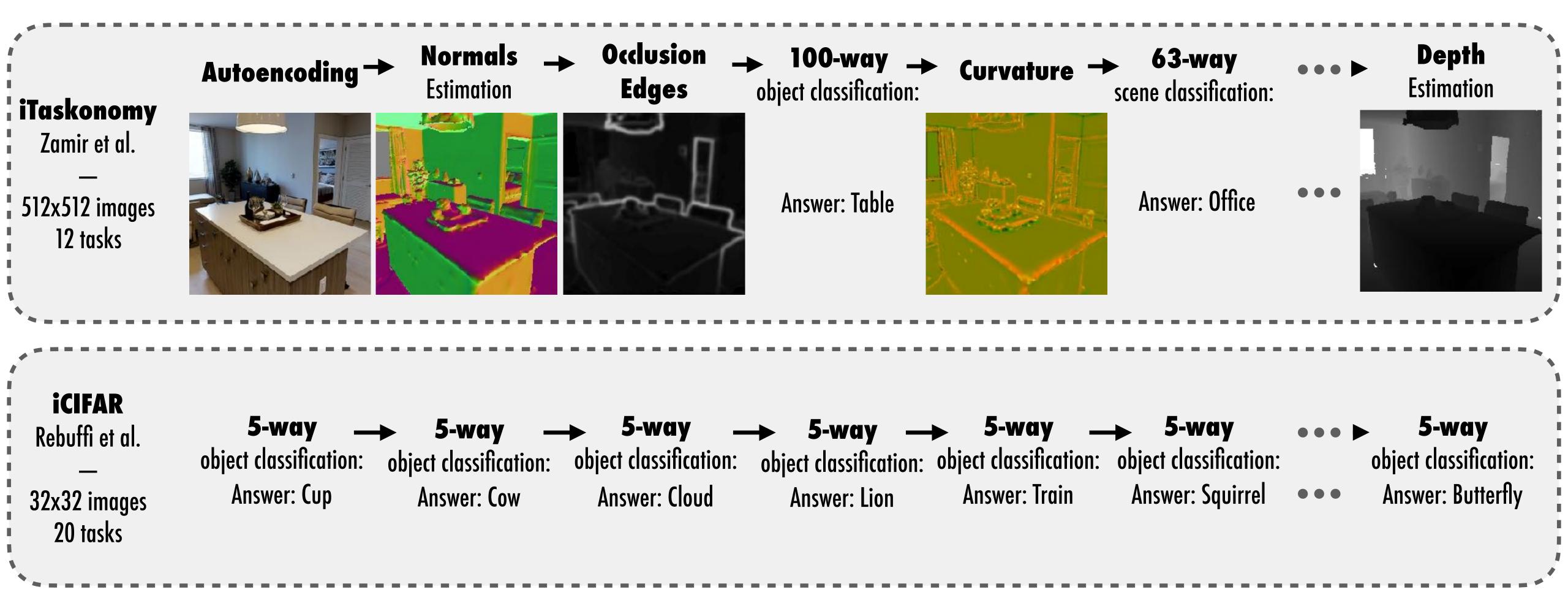
Increasing inability of a network to adapt to new problems as it accrues constraints from previous problems.

The concept of rigidity: an enigma (Len, 1983)

Riemannian walk for incremental learning: understanding forgetting and intransigence (Chaudhry et al 2018)

Side-tuning: no forgetting + no rigidity

Incremental learning datasets: tasks

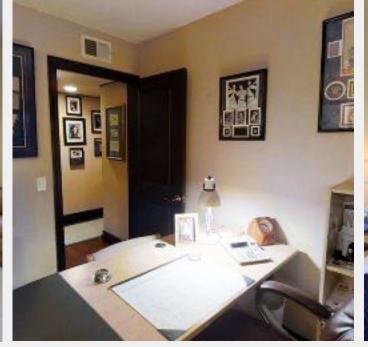


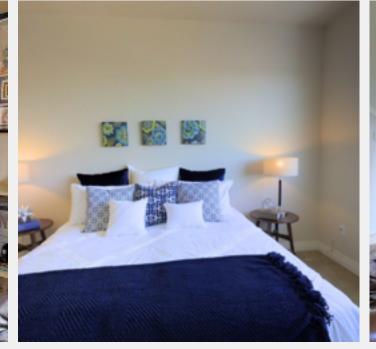
Incremental learning datasets: query images

iTaskonomy

Zamir et al.

512x512 images 12 tasks

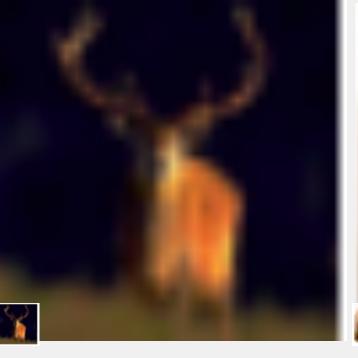


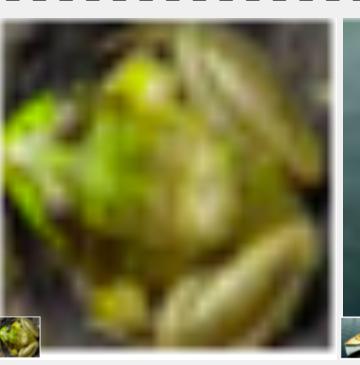


iCIFAR

Rebuffi et al.

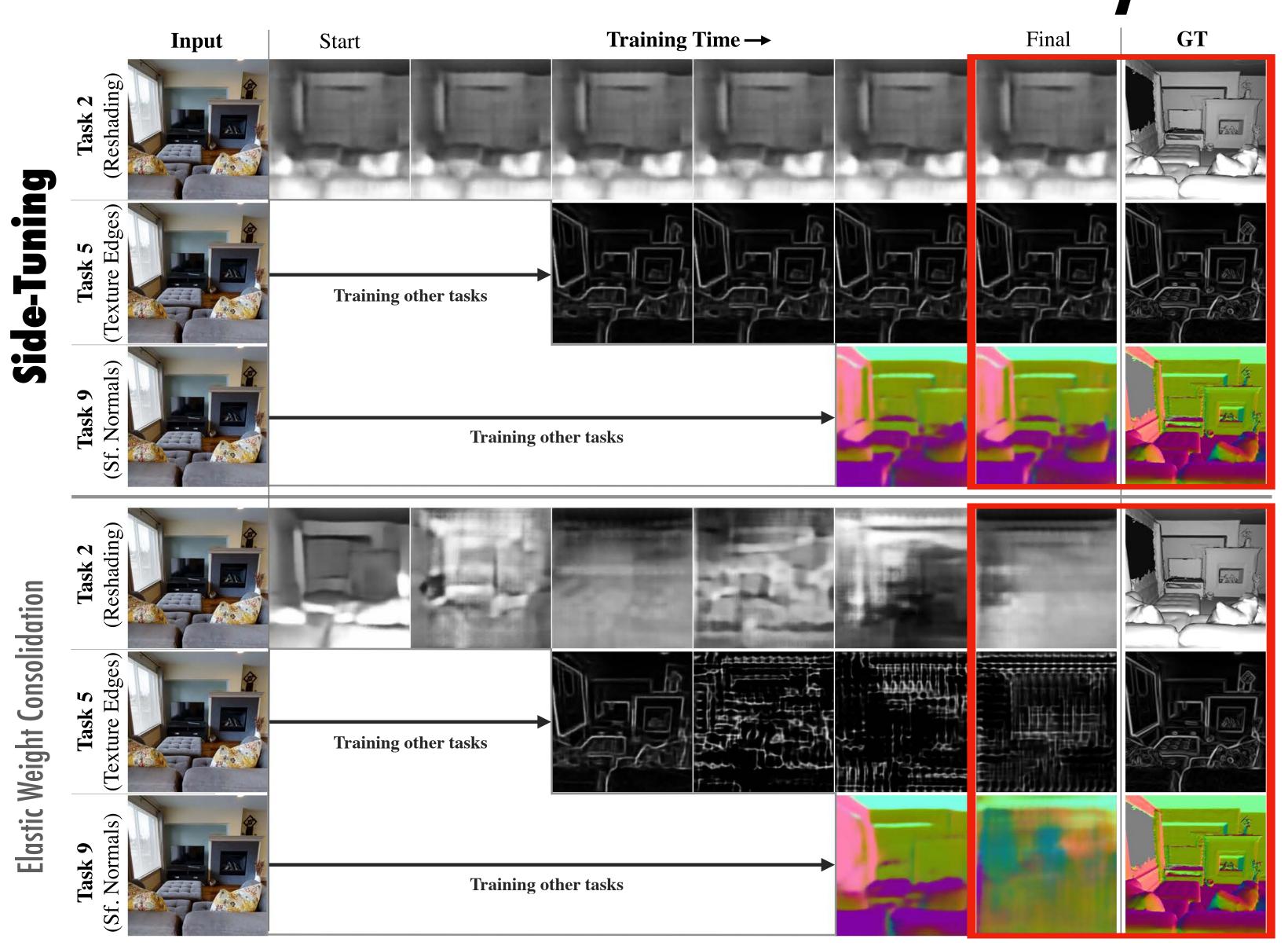
32x32 images 20 tasks



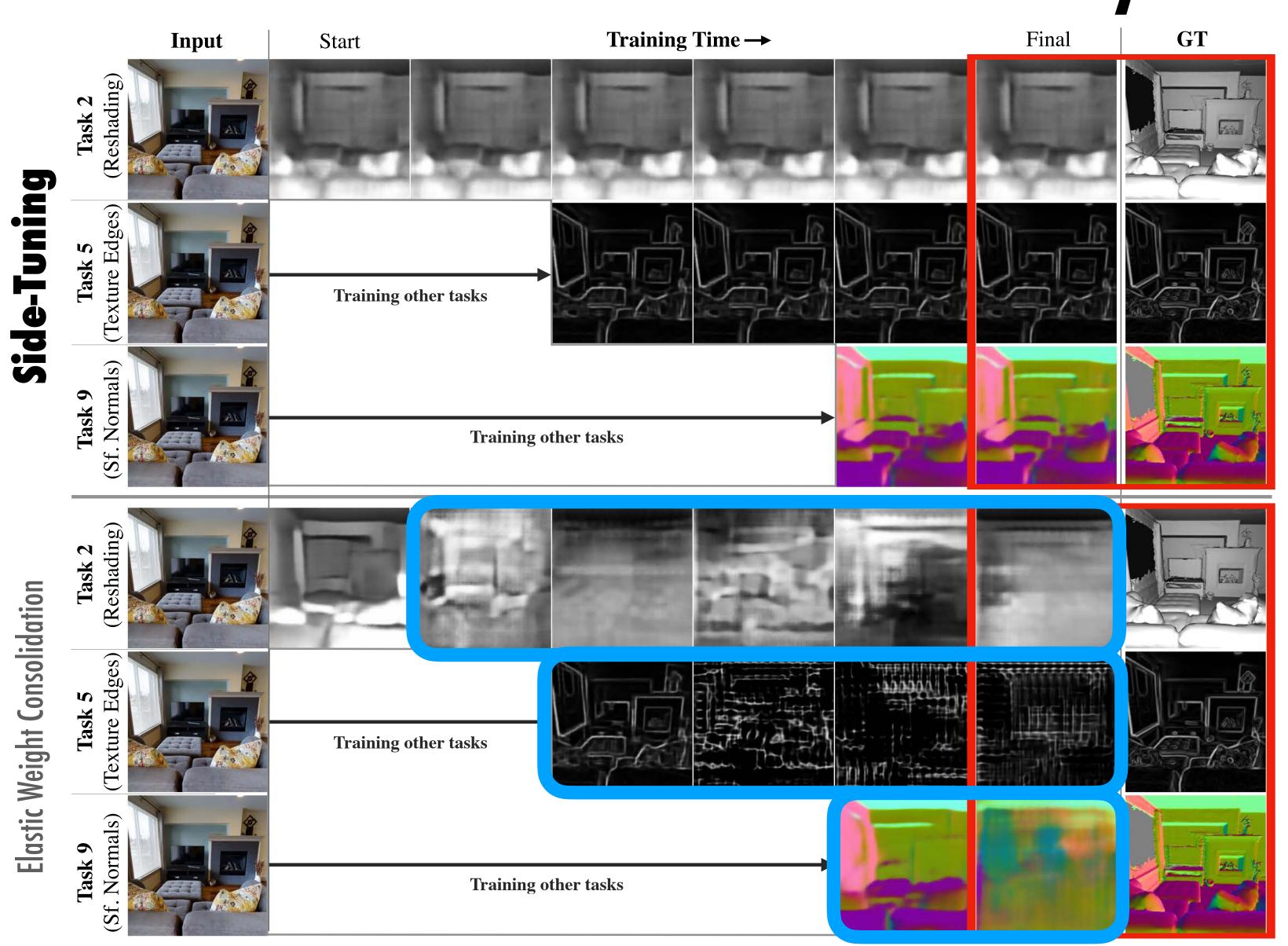


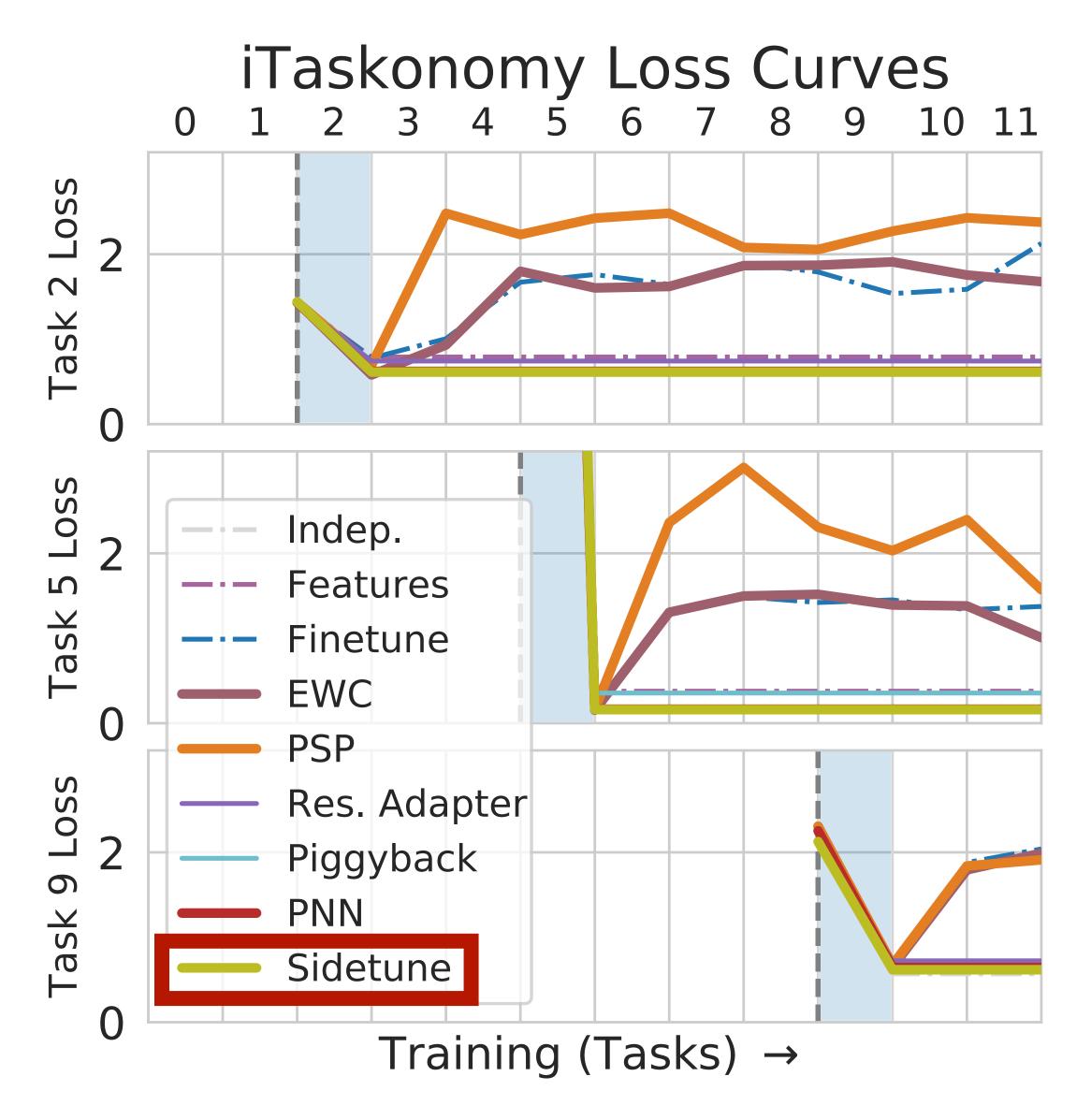
Trends shift on harder datasets: "Which Tasks Should Be Learned Together in Multi-task Learning?" Standley et al (ICML 2020)

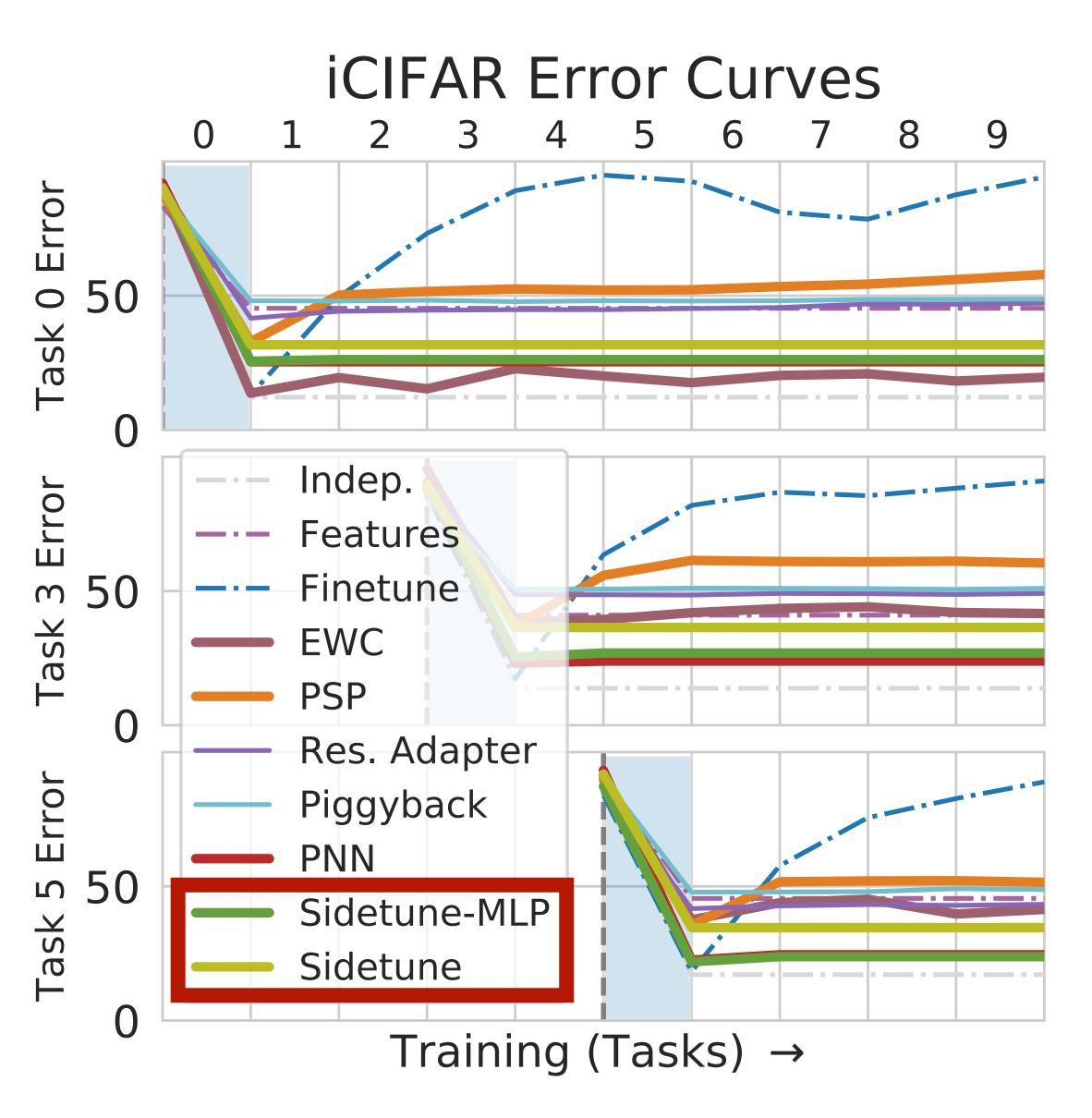
Evaluation on iTaskonomy

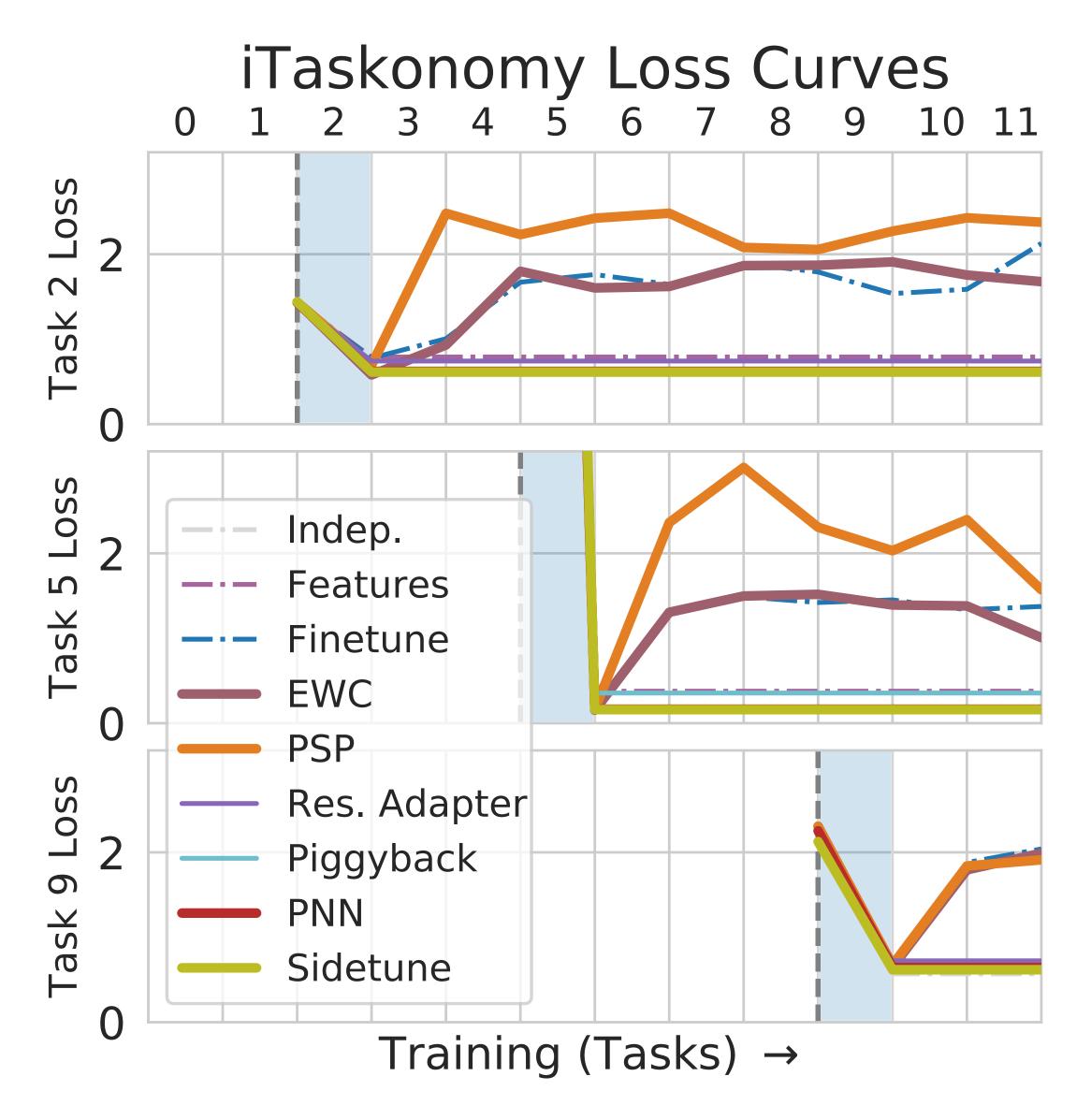


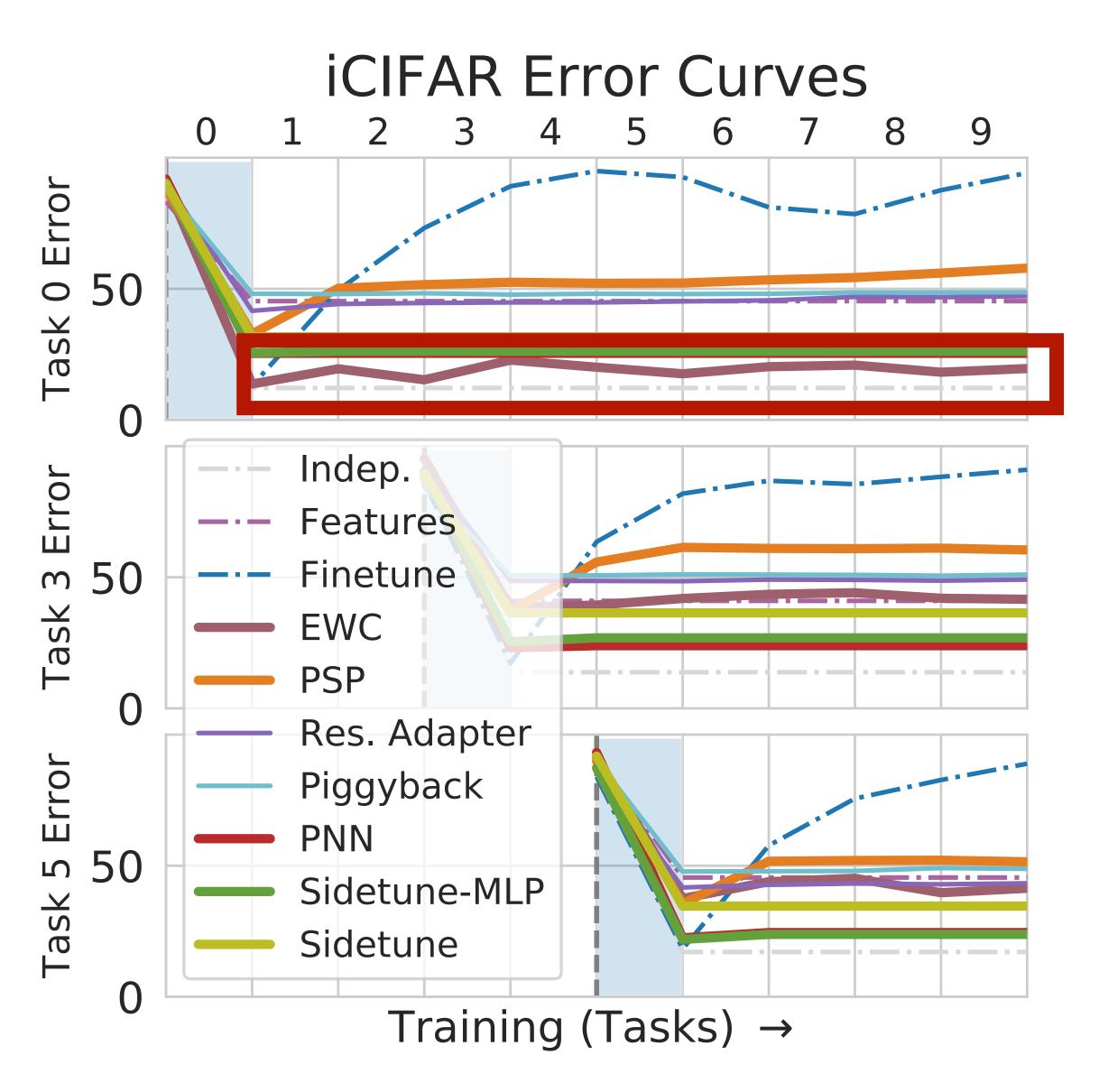
Evaluation on iTaskonomy

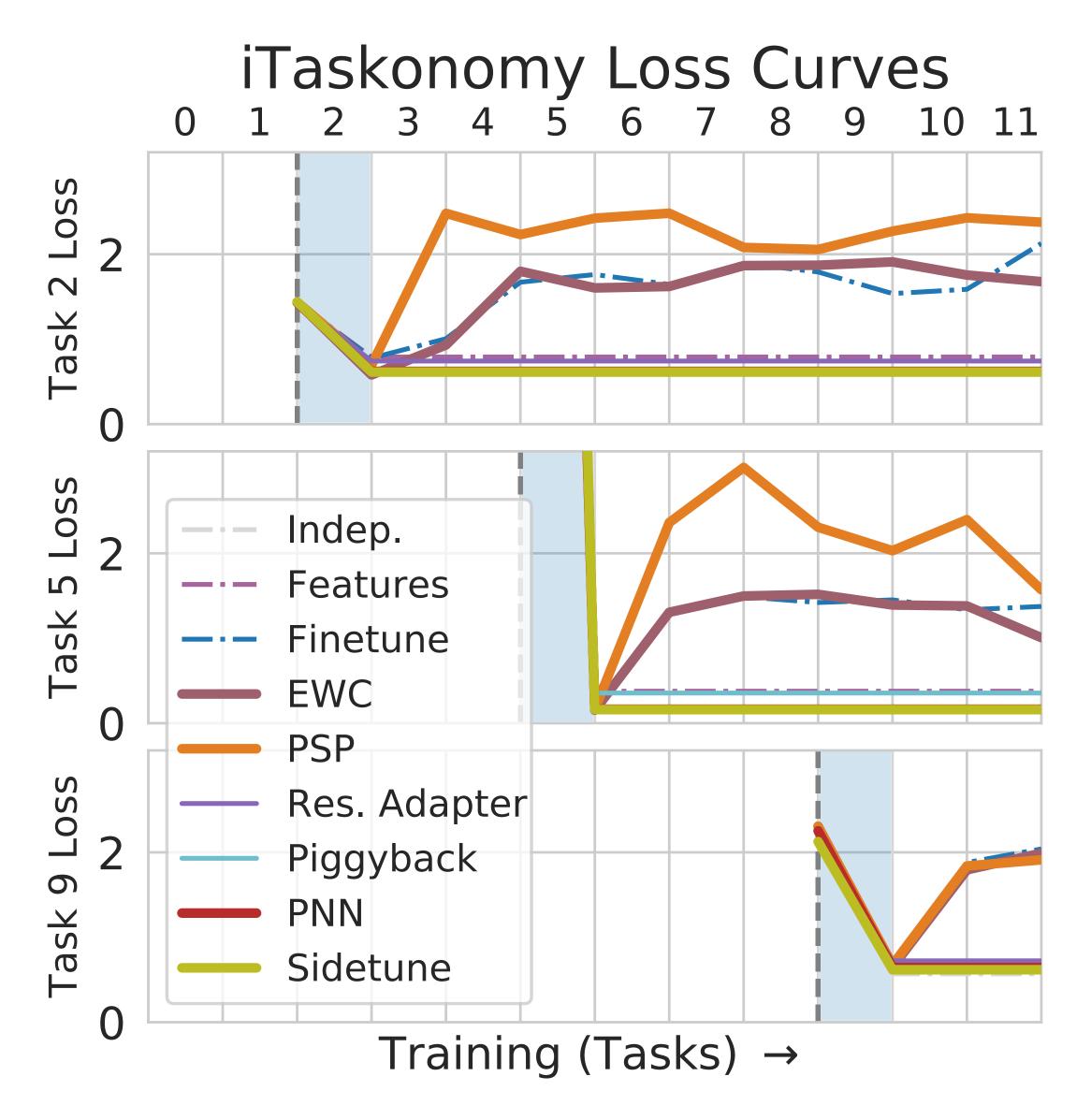


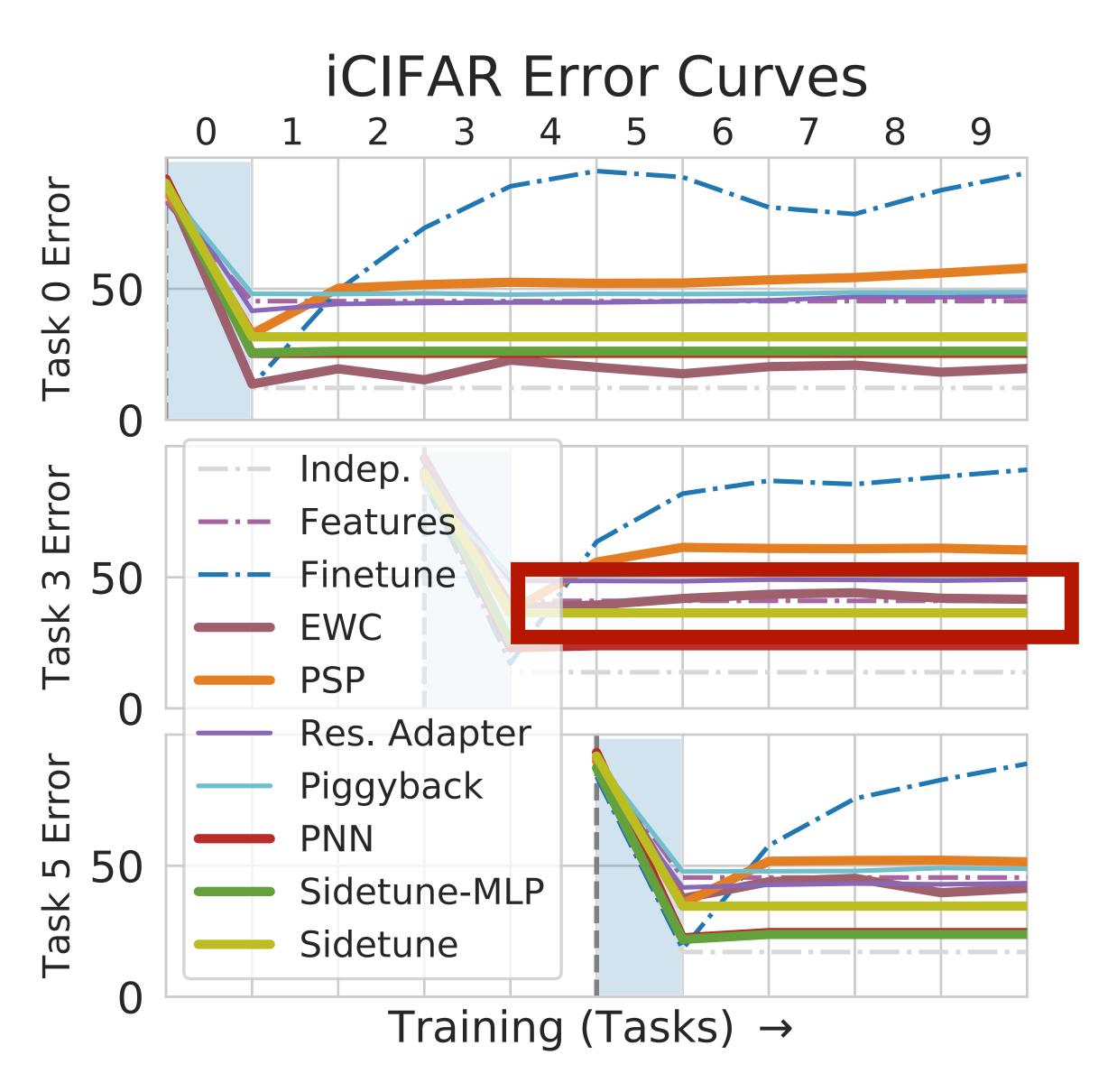


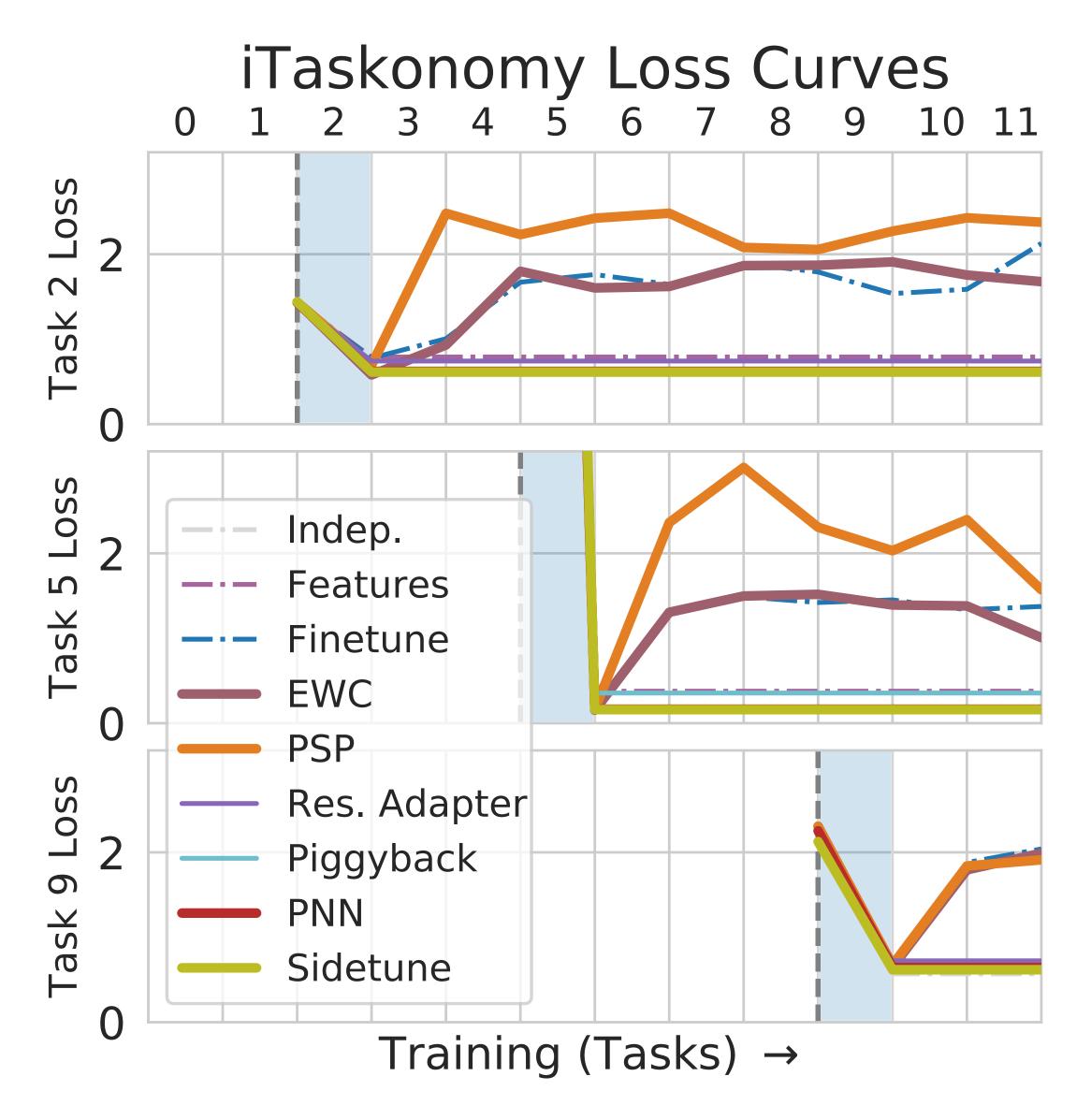


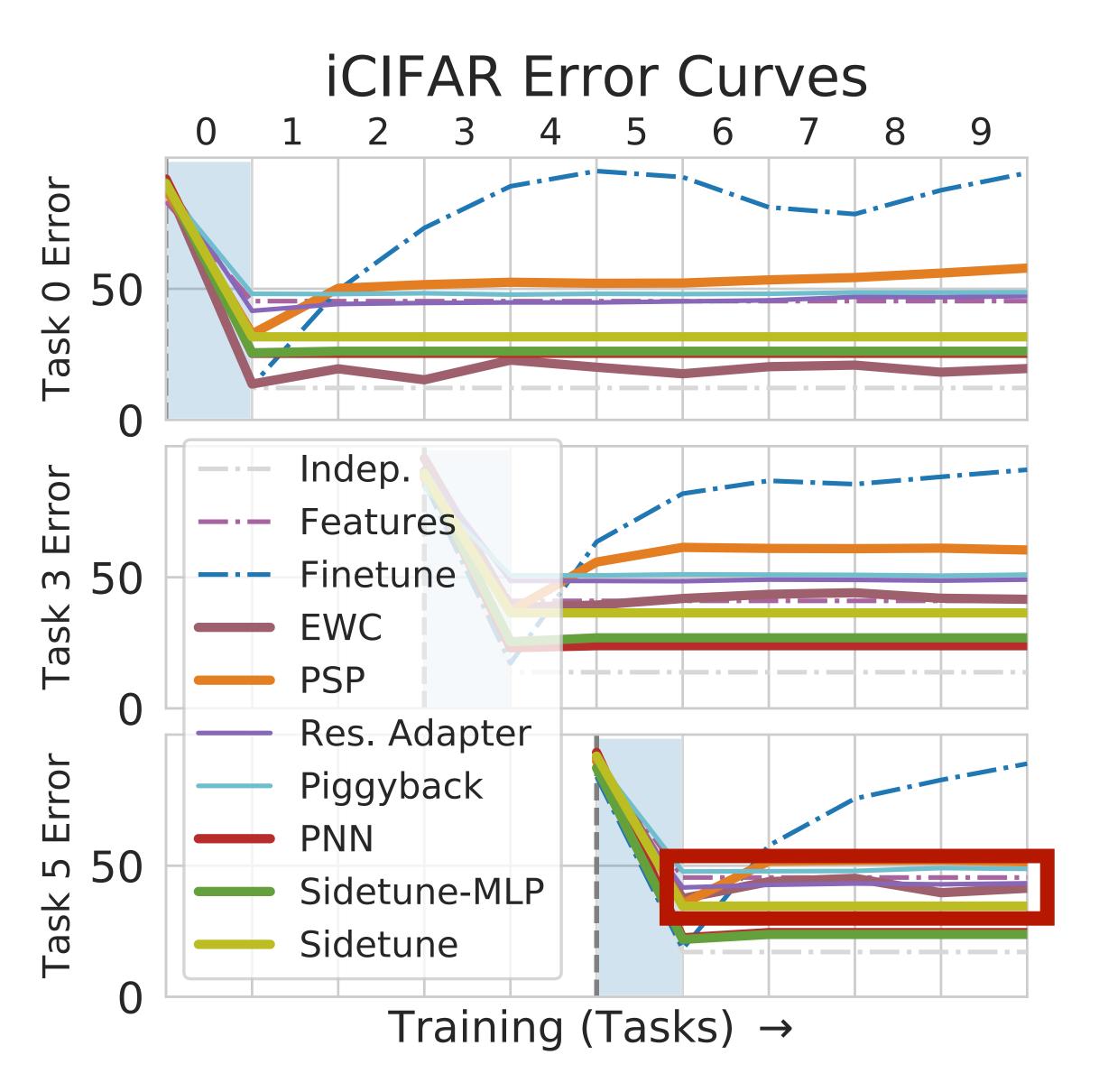




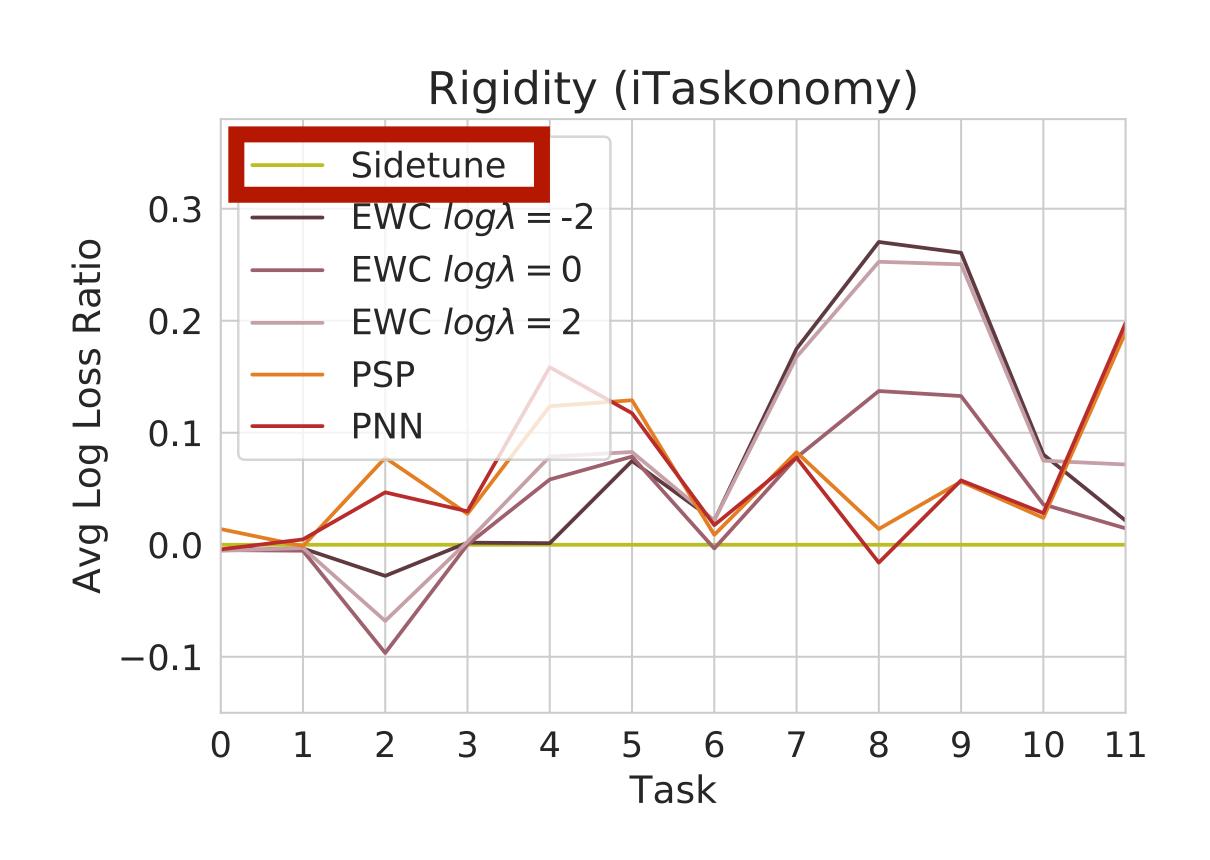


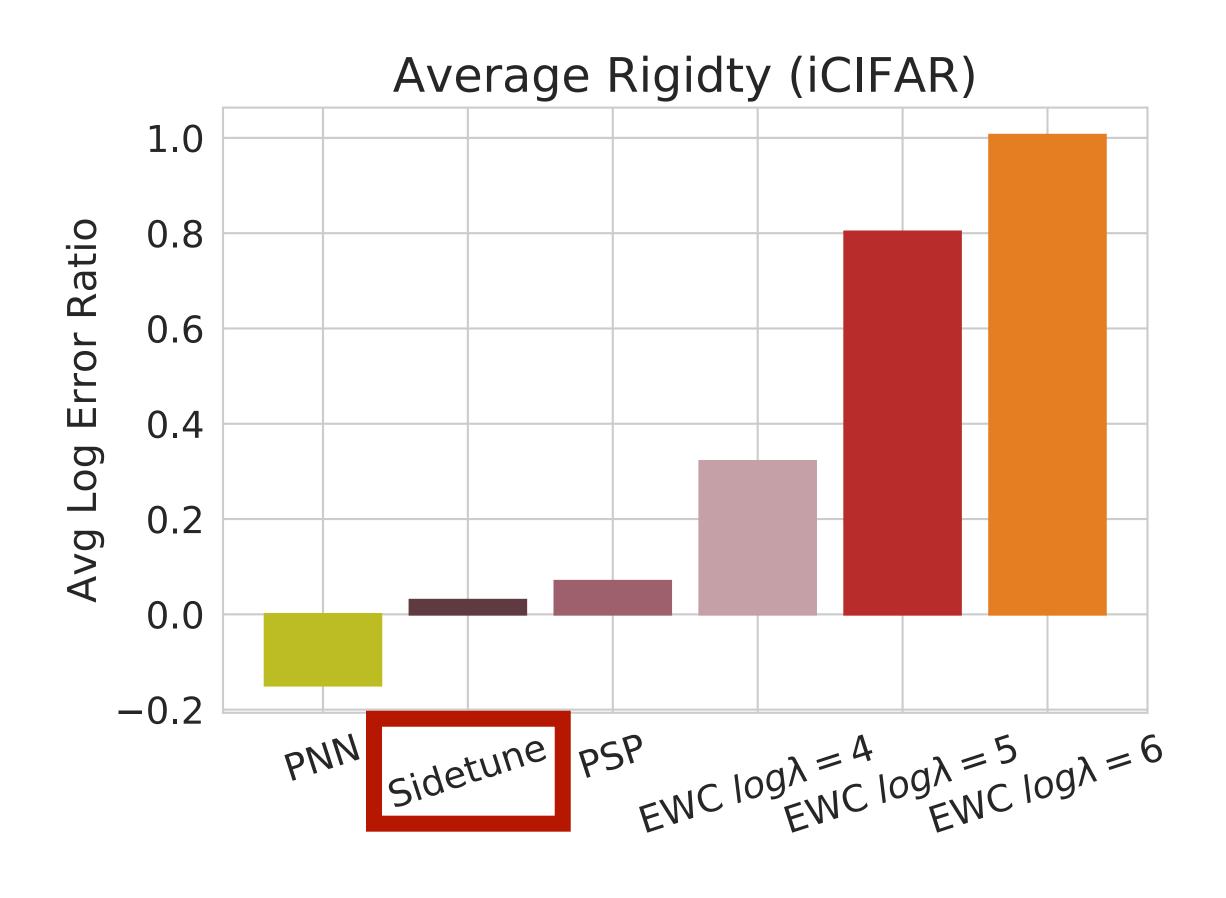




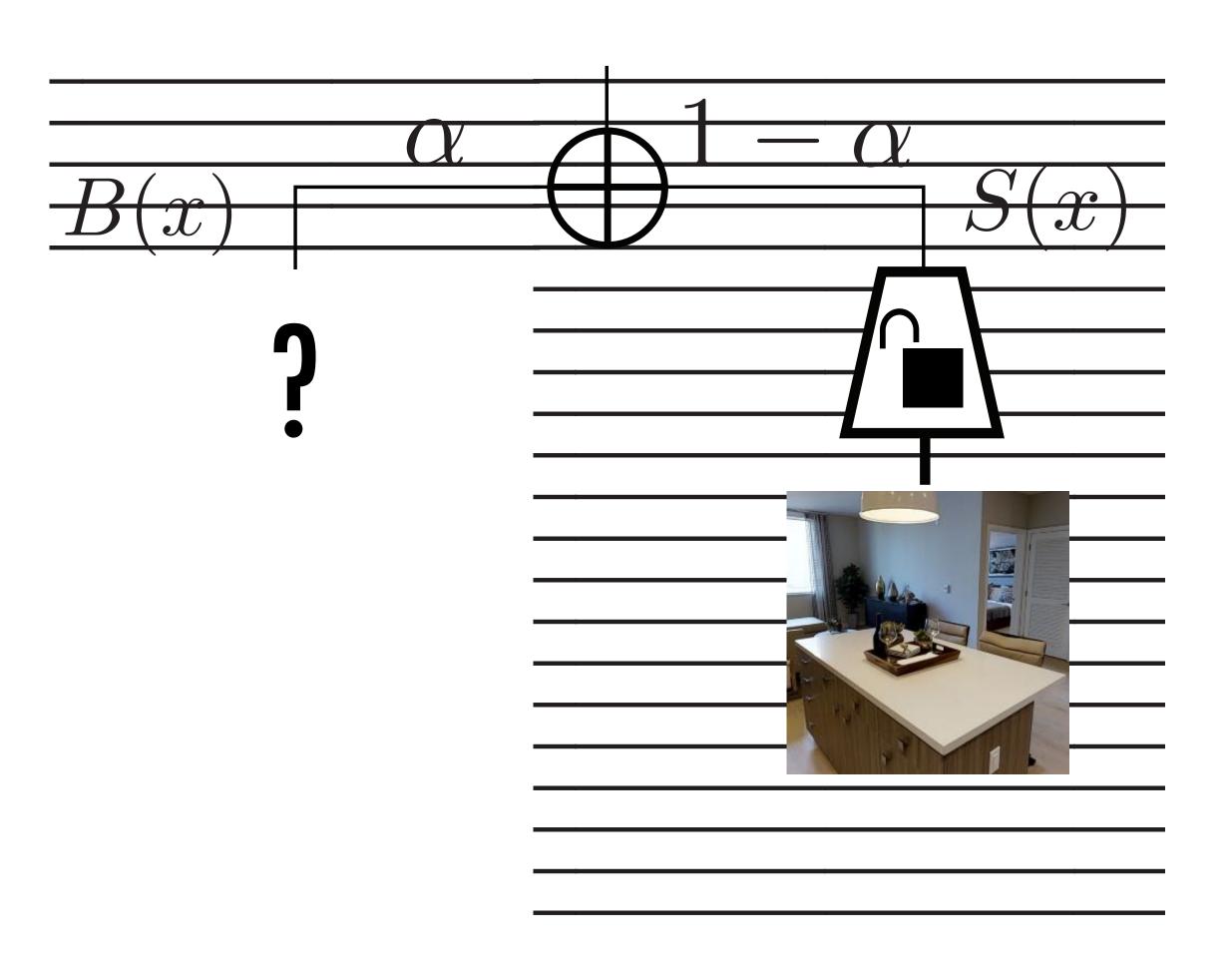


Results: rigidity in incremental learning



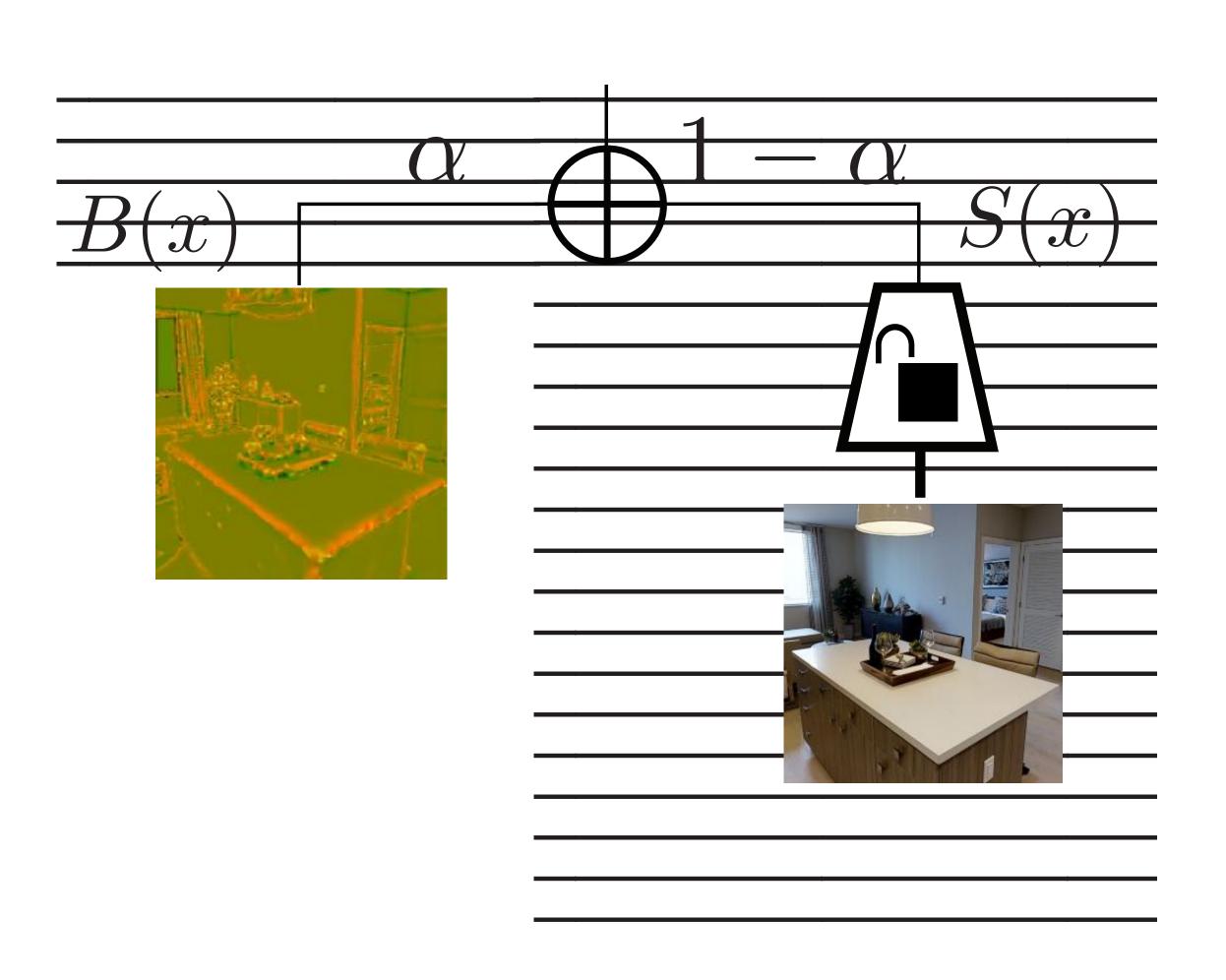


Side-Tuning: Beyond Network Adaptation



- Base model needn't be a network
- Decision tree, or oracle for some other task

Side-Tuning: Beyond Network Adaptation

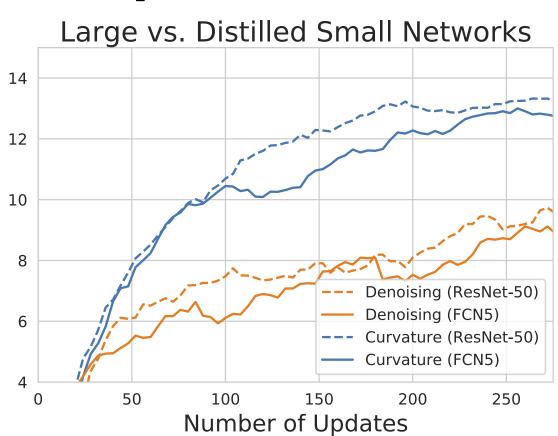


- Base model needn't be a network
- Decision tree, or oracle for some other task
- Can actual curvature label
- Works really well.

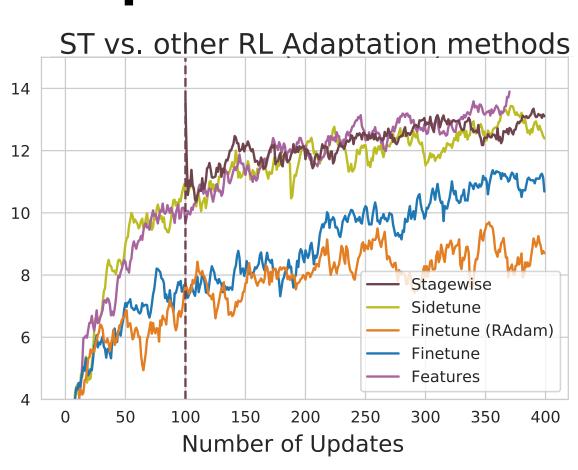
More in our paper + on the website:

sidetuning.berkeley.edu

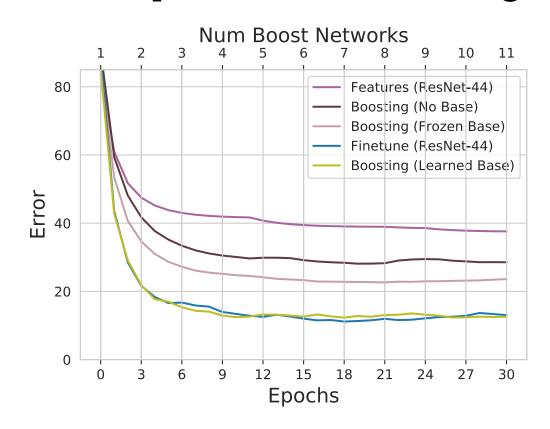
Analysis of network size:



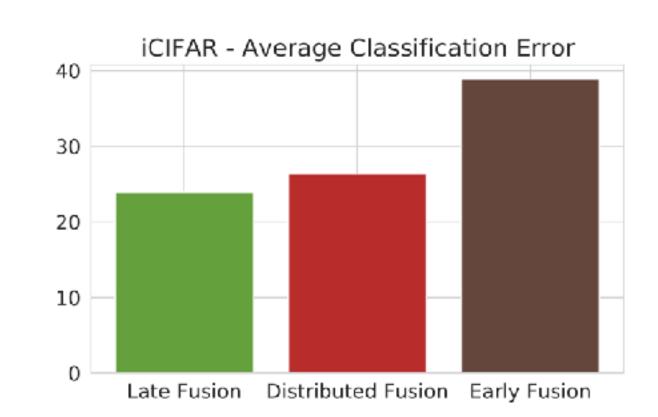
Comparison to other adaptation methods in RL



Comparison to boosting



Fusion: Early vs. Mid vs. Late



Ablation studies with different design choices

	Avg. Rank (\downarrow)		
Met	iTaskonomy		
Product (El	Product (Element-wise)		
	$ Summation (\alpha-blending) $		
	MLP ([29])		
FiLM	1.91		
		Avg. Rank (\downarrow)	
	Method	iTaskonomy	
	Base-Only	2.55	
	Side-Only	2.10	
	Side-tuning	1.36	

And more:

- Experiments with non-neural network base
- ullet Analysis of lpha w.r.t. task relatedness
- Code (github repo)
- Environments to reproduce experiments (via docker)
- Full qualitative and quantitative results for all methods

Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks

http://sidetuning.berkeley.edu

Swiss Federal

Jeffrey O. Zhang

Alexander Sax

Amir Zamir

Leonidas Guibas

Jitendra Malik